Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells
نویسندگان
چکیده
A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC) films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2) based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm) of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc) and conversion efficiency (η) of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC), the fill factor (FF), and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2) compared to those of fabricated without the ARC.
منابع مشابه
Stability of SiNX/SiNX double stack antireflection coating for single crystalline silicon solar cells
Double stack antireflection coatings have significant advantages over single-layer antireflection coatings due to their broad-range coverage of the solar spectrum. A solar cell with 60-nm/20-nm SiNX:H double stack coatings has 17.8% efficiency, while that with a 80-nm SiNX:H single coating has 17.2% efficiency. The improvement of the efficiency is due to the effect of better passivation and bet...
متن کاملAntireflection TiOx Coating with Plasmonic Metal Nanoparticles for Silicon Solar Cells
It is known that the light scattering from the metal particles deposited on the surfaces of cells can be used for increasing light trapping in the solar cells. In this work, plasmonic structures are composite materials that consisted of silver nanoparticles embedded in dielectric films of TiO x -used as cell antireflection coating. The films are deposited by sol-gel method using spin-on techniq...
متن کاملNew high-efficiency protective coating containing glycidyl-POSS nanocage for improvement of solar cell electrical parameters
Various antireflection thin films are often used to cover glass to increase solar cell electrical parameters. In the recent years many efforts have been done to develop and improve of solar cell films with high electrical output. One of the most important challenges of obtaining of high-efficiency thin films of solar cells is creation an effective light trapping system. The new polymeric protec...
متن کاملAntireflection and SiO2 Surface Passivation by Liquid-Phase Chemistry for Efficient Black Silicon Solar Cells
We report solar cells with both black Si antireflection and SiO2 surface passivation provided by inexpensive liquid-phase chemistry, rather than by conventional vacuum-based techniques. Preliminary cell efficiency has reached 16.4%. Nanoporous black Si antireflection on crystalline Si by aqueous etching promises low surface reflection for high photon utilization, together with lower manufacturi...
متن کاملNanoporous Films with Low Refractive Index for LargeSurface BroadBand AntiReflection Coatings
Nowadays, nanoporous films are widely employed in biochemical applications or in optophotonic devices such as displays, solar cells, or light-guiding systems. In particular, the technological feasibility of nanoporous layers with low refractive indices has recently enabled the development of high-efficiency anti-reflection coatings. In this paper, we report on hybrid polymer nanoporous films th...
متن کامل